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It is well established that the phase transition between survival and extinction in spreading models with
short-range interactions is generically associated with the directed percolation �DP� universality class. In many
realistic spreading processes, however, interactions are long ranged and well described by Lévy flights—i.e.,
by a probability distribution that decays in d dimensions with distance r as r−d−�. We employ the powerful
methods of renormalized field theory to study DP with such long-range Lévy-flight spreading in some depth.
Our results unambiguously corroborate earlier findings that there are four renormalization group fixed points
corresponding to, respectively, short-range Gaussian, Lévy Gaussian, short-range, and Lévy DP and that there
are four lines in the �� ,d� plane which separate the stability regions of these fixed points. When the stability
line between short-range DP and Lévy DP is crossed, all critical exponents change continuously. We calculate
the exponents describing Lévy DP to second order in an � expansion, and we compare our analytical results to
the results of existing numerical simulations. Furthermore, we calculate the leading logarithmic corrections for
several dynamical observables.
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I. INTRODUCTION

The formation and the properties of random structures
have been an exciting topic in statistical physics for many
years. In the case that the formation of such structures obeys
local rules, these processes can often be expressed in the
language of epidemic spreading. It is well known that two
special spreading processes referred to in this language, re-
spectively, as simple epidemic with recovery or Gribov pro-
cess �1,2� and epidemic with removal �general epidemic pro-
cess� lead to random structures with the properties of
percolation clusters: directed percolation �3–5� in the former
case and isotropic percolation in the latter.

The Gribov process, also known in elementary particle
physics as Reggeon field theory �RFT� �6–8�, is a stochastic
multiparticle process that describes the essential features of a
vast number of growth phenomena of populations without
exploitation of the environment near their extinction thresh-
old. The transition between survival and extinction of the
population �infected individuals� is a nonequilibrium con-
tinuous phase transition phenomenon and is characterized by
universal scaling laws. The Gribov process belongs to the
universality class of local growth processes with absorbing
states �9–11� such as the contact process �12–14� and certain
cellular automata �15,16�, and it is relevant to a vast range of
models in physics, chemistry, biology, and sociology �17�. As
usual, we refer to this universality class as the directed per-
colation �DP� universality class. For recent reviews see
�18,19�.

A continuum description of DP in terms of a density
n�r , t� of infected individuals typically arises from a coarse-
graining procedure in which a large number of microscopic
degrees of freedom are averaged out. Their influence is sim-
ply modeled as a Gaussian noise term in a Langevin equa-
tion. The process has to respect the absorbing-state condi-
tion: n�r , t��0 is always a stationary state. Then the minimal

stochastic reaction-diffusion equation for the density n�r , t�
is constructed as �9�

�−1�tn�r,t� = �2n�r,t� − �� +
g

2
n�r,t��n�r,t� + ��r,t� .

�1.1�

The Gaussian noise ��r , t� must also respect the absorbing-
state condition, whence

��r,t���r�,t�� = �−1g�n�r,t���r − r����t − t�� �1.2�

up to subleading contributions. The history of the process in
space and time defines directed percolation clusters in a �d
+1�-dimensional space. The minimal process defined by Eqs.
�1.1� and �1.2� contains all the relevant terms needed for a
proper field-theoretic description of DP.

In realistic situations the infection can be also long
ranged. One may think, e.g., of an orchard where flying para-
sites contaminate the trees practically instantaneously in a
widespread manner if the time scale of the flights of the
parasites is much shorter than the mesoscopic time scale of
the epidemic process itself. Thus, following a suggestion of
Mollison �8�, Grassberger �20� introduced a variation of the
epidemic processes with an infection probability distribution
P�r� which decays with the distance r as a power law,
P�r��r−d−�. We will somewhat casually refer to such long-
range infection as Lévy flights, although a true Lévy flight is

defined via its Fourier transform as P̃�q��exp�−bq�� with
0��	2 �to ensure positiveness of the distribution�.

In Fourier space and in a long-wavelength expansion, the
Langevin equation �1.1� can be generalized to account for
Lévy flights by a term proportional to q�n�q , t�. In the case
of 2−��2
�0, the long-wavelength behavior is naively
dominated by this new term. Grassberger calculated critical
exponents in a one-loop calculation which were discontinu-
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ous in the limit 
→ +0, and therefore the applicability of the
results was doubtful. In a former paper �21�, we have shown
by applying the Wilson momentum shell renormalization
group that only two of the critical exponents are independent
in long-range DP and that the critical exponents change con-
tinuously when the transition line between long-ranged and
short-ranged spreading �with an 
=
c�0� is crossed. We
have also shown that

�c = 2�1 − 
c� = d + z −
2�



= z − � �1.3�

exactly, where �, 
, �, and z are the usual exponents of
short-ranged DP in d �transversal� dimensions. These results
have been confirmed numerically by Hinrichsen and Howard
�22�. Note that ��=z−2−�, which corresponds to the Fisher
exponent of equilibrium critical phenomena, is negative here
�23�. For a recent review of DP with long-range interactions
see �24�. In this paper we reconsider the problem using meth-
ods of renormalized field theory in conjunction with an ex-
pansion in � and 
.

The remainder of this paper is organized as follows: Sec-
tion II reviews the field-theoretic formulation of DP with
Lévy-flight spreading to set the stage, to provide background
information, and to establish notation. Section II first reviews
the short-range limit of this model and then discusses our
field-theoretic analysis of the long-range limit. Section IV
represents the main part of this paper. It treats in detail the
hybrid model for 
=O���. Section V builds up on the results
of Sec. IV and presents results for the critical exponents and
logarithmic corrections of various dynamical observables.
Section VI contains some concluding remarks.

II. MODELING DP WITH LÉVY-FLIGHT SPREADING

To generalize the diffusional infection rate in the Lange-
vin equation �1.1�, we model spreading by writing

�tn	�r,t�	inf =
 ddr�P�r − r��n�r�,t� . �2.1�

As a particular model for the positive distribution P�r� which
contains all relevant properties, we use P�r�= PLR�r�
+ PSR�r� with a short-range contribution PSR�r�
�exp�−r2 /a2� and a Lévy-flight part PLR�r�� �r2+a2�−�d+��/2.
a denotes a microscopic length scale which, for simplicity, is
assumed to be equal in both otherwise independent distribu-

tions. Fourier transformation leads to P̃SR�q�
�exp�−�aq�2 /4� and P̃LR�q��K�/2�aq�, where K�/2 is the
modified Bessel function with index � /2. Long-wavelength
expansion leads to

P̃�0� − P̃�q� = A�aq�2 +
B

2 − �
��aq�� − �aq�2� + O�q4,q2+�� ,

�2.2�

with positive, nonsingular, �-dependent constants A and B.

P̃�q� shows the two typical terms: diffusion ��aq�2 and

Lévy flights ��aq��. It is IR stable; that is, P̃�0�− P̃�q� is

positive in both regions ��2 and ��2 if q→0. Note the
characteristic pole at �=2 that leads to a logarithmic contri-

bution �−�aq�2 ln�aq� to P̃�q� for �→2. In the following

we use for P̃�0�− P̃�q� its long-wavelength approximation

�2.2�. Whereas P̃�0�− P̃�q� is always a positive real quantity,
its long-wavelength approximation changes sign at a magni-
tude qg of the momentum of order aqg=O�1� if ��2 or if
��2 and A�B / �2−��, which leads to a pole in the Green’s
function of the equation of motion. Of course, this pole is a
nonphysical ghost; it arises when the long-wavelength ap-
proximation is used in a momentum regime where it is inap-
plicable. This happens in particular in dimensional regular-
ization where integrations over internal momenta are
extended to infinity. Hence, this method may become incon-
sistent if both types of q dependences, �aq�2 and �aq��, are
used in common. We come back to this question in Sec.
IV C. In contrast, Wilson’s momentum shell renormalization
procedure avoids this dangerous UV region q=O�1 /a� be-
cause all momenta are restricted to the sphere q	O��� with
��1 /a. This was the reason for using Wilson’s renormal-
ization group in our former publication �21�. Note also that
dimensional regularization leads in the present problem like
in other similar problems to the so-called triviality problem
at the upper critical dimension; i.e., the dimensionally regu-
larized theory misses logarithmic corrections and thus has to
be viewed as an effective theory for low momenta.

The stochastic equation of motion of the DP process with
the Lévy-flight spreading and short-range diffusion can be
written as

�−1�tn�r,t� = ��2 − c�− �2�1−
�n�r,t� − �� +
1

2
gn�r,t��n�r,t�

+ ��r,t� , �2.3�

where we set �=2�1−
�. Here the Lévy term on the
right-hand side is defined in Fourier space as
�−�2�1−
n�r , t�=�qq2�1−
�n�q , t�exp�iq ·r�. In order to de-
velop a renormalized field theory, it is useful to recast the
Langevin equation �2.3� as a dynamic response functional
�25,26�

J�s̃,s� =
 ddrdt�s̃��−1�t + �� − �2 + c�− �2�1−
�

+
g

2
�s − s̃�
s , �2.4�

where s�r , t��n�r , t� is the rescaled density which ensures
that g�=g and for which the time inversion symmetry
s�r , t�↔−s̃�r ,−t� �rapidity reversal in RFT� holds. s̃�r , t� is a
response field that describes the response when a local par-
ticle source h�r , t��0 is added to the Langevin equation
�2.3�. At the level of the dynamic response functional, this
source leads to an additional term �ddrdth�r , t�s̃�r , t� in Eq.
�2.4�. Having the dynamic response functional, correlation
and response functions can be computed as functional aver-
ages �path integrals� of monomials of s and s̃ with weight
exp�−J�. Throughout this paper, functional integrals are in-
terpreted in the sense of the so-called prepoint discretization
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that sets the step function ��t� equal to zero for t=0 �27�. We
stress that the usual short-ranged DP model is recovered
from the general expression of J simply by setting c=0, or
c=1 with 
=0.

As a first step towards the renormalization group �RG�
analysis of this model, we discuss its canonical scaling be-
havior. Introducing the usual inverse length scale �, we
readily find s̃�s��d/2. For 
�0, the long-range Lévy term
��−�2�1−
 naively dominates the usual diffusion term ��2.
Hence, we may neglect the latter for 
�0, and we redefine
�by rescaling of some parameters� c=1. This produces an
inverse time scale ���, and ���� for the scaling of the
control parameter. Moreover, we obtain g2���̄, where �̄
=2�−d=�−4
 �we will reserve the symbol � for the short-
range case—i.e., �=4−d�. The naive dimension of the cou-
pling constant g allows us to identify the upper critical di-
mension dc�
�=4�1−
�=2�. This boundary separates trivial
�mean-field or Gaussian� from nontrivial long-range behav-
ior if 
�0. Of course, the boundary 
=0, d�4 separates
the regions with trivial long-range and trivial short-range DP,
and the boundary 
�0, d=4 separates trivial and nontrivial
short-range DP.

III. SHORT-RANGE AND LONG-RANGE MODELS

We now turn to perturbation theory. In this section, we
will first briefly review the short-range model obtained for
c=0, which has been discussed previously in many places
�see �19� and the references cited therein�. Then we will
treat, also briefly, the long-range model obtained for c→�.
As usual in dynamical field theory, we focus on those corre-
lation and response functions

GNÑ = ��s�N�s̃�Ñ� �3.1�

that require renormalization due to the presence of UV di-
vergences in Feynman diagrams as well as the corresponding

one-particle irreducible �1PI� vertex functions with Ñ �N�
external s̃ �s� legs, �ÑN. For background on the methods of
renormalization theory, we refer to �28�.

A. Short-range model: c=0

We first review ordinary DP which is modeled by J as
given in Eq. �2.4� with c=0 �9,10�. The upper critical dimen-
sion is dc�0�=4. Straightforward dimensional analysis shows
that there are three superficially divergent vertex functions:
�1,1, �1,2=−�2,1, where the last relation follows from time
inversion symmetry. In the following, we use the symbol ˚
over a character to denote bare �unrenormalized� couplings
and we use the following renormalization scheme to cure the
model of its UV divergences:

s̊ = Z1/2s, s̊̃ = Z1/2s̃, �̊ = Z−1Z�� ,

�̊ = Z�
−1Z�� + �̊c, g̊2 = G�

−1Z−1Z�
−2Zuu��, �3.2�

where G�=��1+� /2� / �4��d/2 is a convenient amplitude, u
represents the dimensionless coupling constant, and the con-
trol parameter � is zero at the critical point. In dimensional

regularization, the critical bare value of the control parameter
�̊c is of the form

�̊c = g̊4/�S��� , �3.3�

where the Symanzik function S��� has simple IR poles at
each �=2 /k with k=1,2 , . . .. Hence, �̊c is not a perturbational
quantity and is formally zero in the � expansion. Note, how-
ever, that minimal renormalization—i.e., dimensional regu-
larization in conjunction with minimal subtraction—does not
imply the � expansion �29�. The renormalization factors Z. . .
are functions of u and have in minimal renormalization the
expansions

Z. . . = 1 + �
n=1

� Y . . .
�n��u�

�n , Y . . .
�n��u� = �

l=n

� Y . . .,l
�n�

l
ul, �3.4�

where the Z. . . are determined in such a way that the pertur-
bation expansions of renormalized quantities are free of sin-
gularities if � goes to zero. They are given to second order by
�9,10,19�

Z = 1 +
u

4�
+ �7

�
− 3 +

9

2
ln

4

3
� u2

32�
+ O�u3� ,

Z� = 1 +
u

8�
+ �13

�
−

31

4
+

35

2
ln

4

3
� u2

128�
+ O�u3� ,

Z� = 1 +
u

2�
+ �1

�
−

5

16
� u2

2�
+ O�u3� ,

Zu = 1 +
2u

�
+ �7

�
−

7

4
� u2

2�
+ O�u3� . �3.5�

A renormalization group equation �RGE� for the model can
be derived in a routine fashion by exploiting the fact that the
unrenormalized response and correlation functions have to
be independent of the inverse length scale � introduced by
renormalization. This reasoning leads straightforwardly to
the RGE

�D +
N + Ñ

2
��GN,Ñ = 0, �3.6�

with an RGE differential operator D=�� /�� 	 bare �the 	bare
indicates that bare quantities are kept fixed while taking the
derivates� given by

D = �
�

��
+ ��

�

��
+ ��

�

��
+ �u

�

�u
. �3.7�

The RG functions result from the finite logarithmic deriva-
tives of the renormalization factors,

�. . . = ��
� ln Z. . .

��
�

bare
= − u

�

�u
Y . . .

�1��u� = − �
l=1

n

Y . . .,l
�n� ul,

�3.8�

as
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�u = ��
�u

��
�

bare
= �− � + 2�� + � − �u�u ,

� = ��
� ln �

��
�

bare
= � − ��,

� = ��
� ln �

��
�

bare
= �� − ��. �3.9�

Their perturbation expansions are

��u� = −
u

4
+ �2 − 3 ln

4

3
�3u2

32
+ O�u3� ,

��u� = −
u

8
+ �17 − 2 ln

4

3
� u2

256
+ O�u3� ,

��u� =
3u

8
− �7 + 10 ln

4

3
� 7u2

256
+ O�u3� ,

�u�u� = �− � +
3u

2
− �169 + 106 ln

4

3
� u2

128
+ O�u3��u .

�3.10�

The asymptotic solution of the RGE, Eq. �3.6�, leads to the
stable fixed point u=u* with u* given by

u* = u*
DP��� =

2�

3
�1 + �169 + 106 ln

4

3
� �

288
+ O��2�� ,

�3.11�

as the stable solution of �u�u*�=0, and to the scaling form

GN,Ñ��r,t�,�� = l�N+Ñ��d+�SR�/2GN,Ñ��lr,lzSRt�,l−1/
SR��

�3.12�

of the response and correlation functions, with the three in-
dependent critical exponents

�SR = ��u*�, 1/
SR = 2 − ��u*�, zSR = 2 + ��u*� .

�3.13�

These are the very well-known critical exponent for short-
range DP. To second order in � expansion, they are given by

�SR = −
�

6
�1 + � 25

288
+

161

144
ln

4

3
�� + O��2�� ,

zSR = 2 −
�

12
�1 + � 67

288
+

59

144
ln

4

3
�� + O��2�� ,


SR =
1

2
+

�

16
�1 + �107

288
−

17

144
ln

4

3
�� + O��2�� .

�3.14�

B. Long-range model: c\�

As we have shown in �21� by using Wilson’s momentum
shell renormalization group and as we discussed in the Intro-
duction, the discontinuity of short-range and long-range criti-
cal exponents at 
=0 is spurious and can be remedied. In
renormalized field theory, the key is to recognize �30� that
there is a region of small 
=O���, where a careful analysis
of the RG flow reveals a smooth connection between the 

�0, 
=O���, and 
�0 regions. Here, we analyze the last
case, which belongs to the true long-range region. The case

=O���, being a “hybrid” between short-range and long-
range models, will be deferred to the next subsection.

We recall from our discussion at the end of Sec. II that the
upper critical dimension for 
�0 is dc�
�=4�1−
�=2�,
and we define �̄=2�−d, to be distinguished from �=4−d.
Considering the response functional J, Eq. �2.4� with c�0,
we see that the operator s̃ �2s is superficially irrelevant com-
pared to s̃�−�2�1−
s and may be dropped formally in the limit
c→�. This limit is feasible after the rescaling �→� /c,
�→�c, and g→gc. The canonical dimensions of the fields
do not change compared to the short-range model. However,
the inverse time scale changes to ��� and the canonical di-
mensions of the remaining parameters are ���� and g
���̄/2. As above, �1,1 and �1,2=−�2,1 are superficially diver-
gent for �̄→0. Moreover, all divergent contributions to any
vertex function are polynomial in the momenta, so that the
operator s̃�−�2�1−
s needs no counterterm. Hence, we use the
renormalization scheme

s̊ = Z̄1/2s, s̊̃ = Z̄1/2s̃, �̊ = Z̄−1� ,

�̊ = Z̄�� + �̊c, g̊2 = A�̄
−1Z̄−1Z̄uu��̄, �3.15�

which produces the renormalized response functional

JLR =
 ddrdt�s̃��−1Z̄�t + �Z̄�� + �− �2�1−
�

+ Z̄u
1/2g

2
�s − s̃�
s . �3.16�

Here and in the following we use an overbar to distinguish
the renormalization factors of the long-range and hybrid
models from those of the short-range model. A�̄ is a suitable
amplitude whose precise definition will be given later. Here,

in minimal renormalization, �̊c= g̊2�/�̄S̄��̄� with an appropri-

ate Symanzik function S̄��̄� having simple poles at �̄=� /k
with k=1,2 , . . .. Note by comparing Eq. �3.2� with Eq. �3.15�
that the renormalization schemes for the short-range and
long-range models are of the same form except for the renor-
malization factor of the kinetic coefficient, which now is

Z̄�=1. Here, we have the expansions

Z̄. . . = 1 + �
n=1

� Ȳ . . .
�n��u�

�̄n , Ȳ . . .
�n��u� = �

n=1

� Ȳ . . .,l
�n�

l
ul. �3.17�

Of course, the functions Ȳ . . .
�n��u� are different from the func-

tions Y . . .
�n��u� and have to be determined by perturbation

theory. Nevertheless, the RG functions for the long-range
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case can be transcribed from the short-range case, Eqs.
�3.6�–�3.8�, simply by decorating each RG function with an
overbar and setting �̄�=0—i.e.,

�̄ = ��
�u

��
�

bare
= �− �̄ + �̄ − �̄u�u ,

�̄ = ��
� ln �

��
�

bare
= �̄, �̄ = ��

� ln �

��
�

bare
= − �̄�.

�3.18�

The scaling form of the response and correlation functions
follows from the RGE as

GN,Ñ��r,t�,�� = l�N+Ñ��d+�lR�/2GN,Ñ��lr,lzLRt�,l−1/
LR�� ,

�3.19�

with the �LR and 
LR given by

�LR = �̄�u*�, 1/
LR = � − �̄�u*� . �3.20�

The third exponent zLR is related to these exponents by the
exact relation

zLR = � + �LR. �3.21�

Hence, we have only two independent critical exponents in
the long-range case—viz. �LR and 
LR.

After this general discussion, we now turn to our actual
perturbation calculation. The propagator of the theory reads
G�q , t�=��t�exp�−���+ 	q	��t� in wave-vector–time represen-
tation. Note that the prepoint discretization mandates that we
have to use ��0�=0 throughout �27�. Note also that the
propagator is free of the ghost problem; i.e., the exponent is
always negative. The one-loop self-energy with frequency �
and wave vector q as the first contribution to the vertex
function �1,1 reads

��q,�� =
�g2

2



p

1

i�/� + 2� + 	p + q/2	� + 	p − q/2	�
.

�3.22�

To calculate this self-energy, it is useful to expand in q and �
and to use the identity

2�−d/2��1 + d/2� 
 ddpf�	p	��

= 2�−d/���1 + d/�� 
 d2d/�pf�	p	2� , �3.23�

which leads the calculation of the primitive divergent one-
loop diagrams back to integrals of the usual known short-
range type. We obtain

��q,�� = −
g2

4�̄
�−�̄/�A�̄�i� +

2�

�� − �̄�
��
 + finite,

�3.24�

where we have displayed only the pole terms in �̄. The pole
at �̄=� is an IR pole and can be removed by introducing a
new mass parameter m�� instead of � via introducing

m−�=� ln �1,1��=0,q ,�� / 	�q�	q=0 �keeping in mind that it is
an IR poles, one may also simply ignore it in the �̄ expan-
sion�. The amplitude A�̄ is defined by

A�̄ =
��2 − �̄/����1 + �̄/��

��� − �̄/2��4��d/2 . �3.25�

Note that A�̄ becomes G� if �→2. Expanding ��� /���̄/� / �1
− �̄ /�� in �̄ and using the renormalization scheme, Eq.
�3.15�, we arrive at the singular part of the vertex function
�11 in one-loop approximation:

�1,1�q,�� = �Z̄i� + Z̄���� −
u

�̄
� i�

4
+

��

2
� + ¯ .

�3.26�

As announced above, there is no singular term proportional
to 	q	�. Using the same techniques, we get

�1,2 = − �2,1 = �g�Z̄u
1/2 −

u

�̄
� �3.27�

for the singular part of the other superficially divergent ver-
tex functions. We read off the one-loop renormalizations of
the long-range model:

Z̄ = 1 +
u

4�̄
+ O�u2�, Z̄� = 1 +

u

2�̄
+ O�u2� ,

Z̄u = 1 +
2u

�̄
+ O�u2� . �3.28�

The RG functions here have the expansions

�̄ = �̄ = −
1

4
u + O�u2�, �̄ =

1

2
u + O�u2� ,

�̄ = �− �̄ +
7

4
u + O�u2��u , �3.29�

instead of those given in Eq. �3.18� for the short-range
model. The stable fixed point is u*=u*

LR=4�̄ /7+O��̄2�, and
the expansions to first order of the long-range critical expo-
nents are

�LR = −
�̄

7
+ O��̄2�, 1/
LR = � −

2�̄

7
+ O��̄2� , �3.30�

which should be compared to the short-range �SR� exponents
given in Eq. �3.20�. As has to be the case, our one-loop
results �3.30� are in perfect agreement with the one-loop re-
sults for the long-range �LR� exponents derived in �21� by
Wilson’s method.

IV. HYBRID MODEL: �=O(ε)

Here, we turn to the analysis of the key region in �d ,
�
space—namely, 
=O���. The naive 
→0 limit of the long-
range model presupposes ��
 and hence fails to resolve the
crossover between the SR and LR models which occurs for

FIELD THEORY OF DIRECTED PERCOLATION WITH … PHYSICAL REVIEW E 78, 061117 �2008�

061117-5




=O���. For both 
 and � small, we follow the work of
Honkonen and Nalimov �30�.

A. Renormalization

Our starting point is the renormalized response functional

J�s̃,s� =
 dtddr�̄s̃�Z̄�̄−1�t + Z̄u
1/2 ḡ

2
�s − s̃�

+ �Z̄��̄ − Z̄��2 + c�− �2�1−
�
s , �4.1�

where we use the renormalization scheme

s̊ = Z̄1/2s, s̊̃ = Z̄1/2s̃, �̊ = Z̄−1Z̄��̄ ,

�̊ = Z̄�
−1Z̄��̄ + �̊c, g̊2 = G�

−1Z̄�
−1Z̄−1Z̄uū��,

c̊ = Z̄�
−1w�2
, �4.2�

and the abbreviations ḡ=�ū��/2 and c=w�2
. As before, the
term s̃�−�2�1−
s does not need a counterterm as long as 

�0.

Using the approach by Honkonen and Nalimov, we con-

struct our renormalization factors Z̄. . . by generalizing the
minimal renormalzation program that led to the expansions
�3.4� and �3.17�. Here, the renormalization factors are now
functions of ū and w, and they contain poles of all linear
combinations �l,k= l�+2k
 with l=1,2 , . . . and k=0,1 ,2 , . . .:

Z̄. . . = 1 + �
l=1

�

�
k=0

� Ȳ . . .;l,k
�1�

l� + 2k

wkūl + O��−2� , �4.3�

where the coefficients Ȳ . . .;l,k
�1� can be chosen such that they are

independent of � and 
 if both are of the same order. To
explain this, let us consider the primitive divergence of an
irreducible diagram consisting of V vertices, P propagators,
L independent loops, and E external amputated legs. By defi-
nition, a primitive divergence is a divergence that arises if all
the Ld inner momentum integrations tend uniformly to infin-
ity. In primitive diagrams, they are the only UV divergences.
In nonprimitive diagrams, they are the divergences that re-
main after all divergences of the renormalization parts of the
diagrams are tamed by lower-order counterterms. After time
integrations over the �V−1� time segments each between ver-
tices, any diagram has the qualitative form

I =
 �ddp�L

�m2 + p2 + cp��V−1 ḡV

� �
k=0

� �1 − V

k
� 
 �cp�−2�k�ddp�L

�m2 + p2�V−1 ḡV

� �
k=0

� �1 − V

k
� 
 �ddp�L

�m2 + p2�V−1+k
ckḡV

� �
k=0

�

CL,V,k�
��L,V,k�ckḡV. �4.4�

Here, the mass m2 is a linear combination of the control
parameter � and frequencies � and serves as an IR regulator.
� is a momentum cutoff, and ��L ,V ,k�=dL−2�V−1�−2k

is the degree of primitive divergence of the diagram. Using
the topological relations P=L+ �V−1� and 3V=2P+E, hence
V= �E−2�+2L, we obtain

��L,V,k� = 2�3 − E� − �L� + 2k
� . �4.5�

The first part 2�3−E� is the superficial divergence of the
diagram with E legs. The second part −�L�+2k
� denotes
the combination which is converted to a simple pole in di-
mensional regularization. This pole term must be eliminated
by a counterterm if both � and 
 become small quantities.
Thus, the overall form of the renormalization factor is as

given in Eq. �4.3�. Up to now, the constants Ȳ . . .;l,k
�1� may still

be functions of � and 
. However, if 
 /� is finite in the limit
�→0, we can neglect this dependence in the sense of the
minimal renormalization. Hence, we can apply this
Honkonen-Nalimov scheme only if 
=O���.

Next, we calculate the logarithmic derivatives of the
renormalization factors. Note that in minimal renormaliza-
tion the only terms of the � functions, �ū=��ū /�� 	 bare and
�w=��w /�� 	 bare, which contain � and 
 explicitly come
from the � factors making g̊2 and c̊ dimensionless �cf. Eq.
�4.2��—i.e., �ū=−�ū+¯ and �w=−2
w+¯. Thus, we ob-
tain from Eq. �4.3�

�̄. . . = ��
� ln Z̄. . .

��
�

bare

= − ��ū
�

�ū
+ 2


�

�w
��

l=1

�

�
k=0

� Ȳ . . .;l,k
�1�

l� + 2k

wkūl

= − �
l=1

�

�
k=0

�

Ȳ . . .;l,k
�1� wkūl, �4.6�

which should be compared to Eq. �3.8� of the short-range
case.

Now we can the relate the functions �̄. . .�ū ,w� to the origi-
nal DP functions �. . .�u�, Eq. �3.8�, pertaining to the short-
range case. To this end, we consider the hybrid response
functional and its renormalizations for 
=0:

	J�s̃,s�	
=0 =
 dtddr�̄s̃�Z̄�̄−1�t + Z̄��̄ − �Z̄� + w��2

+ Z̄u
1/2 ḡ

2
�s − s̃�
s . �4.7�

This functional takes on the form of the original short-range
DP response functional,

J�s̃,s� =
 dtddr�s̃�Z�−1�t + Z�� − Z��2 + Zu
1/2g

2
�s − s̃�
s ,

�4.8�

if we identify the parameters
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� = �1 + w��̄, � = �1 + w�−1�̄, u = �1 + w�−2ū �4.9�

and the renormalization factors

Z�u� = Z̄�ū,w�, �1 + w�Z��u� = Z̄��ū,w� + w ,

Z��u� = Z̄��ū,w�, Zu�u� = Z̄u�ū,w� . �4.10�

The last identifications lead, by comparison of Eq. �4.3� with
Eq. �3.4�, to the relations

�
k=0

�

Ȳ . . .;l,k
�1� wk = Y . . .,l

�1� �1 + w�−2l, �4.11�

in the case of Z, Z� , and Zu, and to

�
k=0

�

Ȳ�;l,k
�1� wk = Y�,l

�1��1 + w�1−2l, �4.12�

in the case of Z�. Collecting, we obtain for the logarithmic
derivatives, Eq. �4.6�,

�̄�ū,w� = ��u� ,

�̄��ū,w� = ���u� ,

�̄u�ū,w� = �u�u� ,

�̄��ū,w� = �1 + w����u� . �4.13�

Using the renormalizations �4.2�, the RG functions become

�̄ū = ��
�ū

��
�

bare
= �− �̄ + 2�̄� + �̄ − �̄u�ū ,

�̄w = ��
�w

��
�

bare
= �− 2
 + �̄��w ,

�̄ = ��
� ln �̄

��
�

bare
= �̄ − �̄�,

�̄ = ��
� ln �̄

��
�

bare
= �̄� − �̄�. �4.14�

However, Eqs. �4.9� and �4.13� suggest that it is more appro-

priate to use instead of �̄, �̄, ū, and w the parameters �, �, and
u, defined by Eq. �4.9�, and

v =
2
w

1 + w
, �4.15�

as the parameters of the theory. The response functional then
becomes

J�s̃,s� =
 dtddr�s̃�Z�−1�t + Z�� − Z��2

+
v

2

��2
�− �2�1−
 + �2� + Zu

1/2g

2
�s − s̃�
s .

�4.16�

Note that J coincides up to a rescaling with JLR, Eq. �3.16�,
if v=2
. Note also that the gradient terms of this response
functional take the same form as proposed for the long-
wavelength or gradient expansion of the general long-range
spreading, Eq. �2.2�. Hence, we expect the same difficulties
concerning the positivity of the propagator for momenta q
�� and ��2 if v�2
.

The RG functions for the new variables are easily derived
from Eq. �4.14� by using Eqs. �4.13�:

�u = ��
�u

��
�

bare
= �− � + 2v + 2�� + � − �u�u ,

�v = ��
�v
��
�

bare
= �− 2
 + v + ���v ,

� = ��
� ln �

��
�

bare
= � − �� − v ,

� = ��
� ln �

��
�

bare
= �� − �� + v . �4.17�

In comparison with the short-range RG functions, Eq. �3.9�,
the new Gell-Mann-Low function �v as well as the functions
�u, �, and � have only an additive contribution of the vari-
able v. Note that we have to consider both u and v as being
parameters of order ��
. In terms of the new variables, the
RGE is still of the form given in Eq. �3.6�; however, here

D = �
�

��
+ ��

�

��
+ ��

�

��
+ �u

�

�u
+ �v

�

�v
�4.18�

has to be inserted as the RG differential operator.

B. Asymptotic scaling regions in the (ε ,�) expansion

In this subsection we analyze the different scaling regions
in a �d ,�� diagram using the results on the hybrid model
derived in Sec. IV A. The asymptotic scaling of response and
correlation functions is governed by the various fixed points
of the renormalization group. To find stable fixed points of
the RGE and the corresponding scaling behavior, we have to
find solutions of the equations �u=�v=0 with the Gell-
Mann-Low functions �u and �v as given in Eqs. �4.17�. The
different fixed points can be classified by setting to zero the
different factors of these functions.

There is the trivial fixed point u*=v*=0. To find its sta-
bility conditions we determine the eigenvalues of its stability
matrix
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�*= = �	��u/�u	* 	��u/�v	*
	��v/�u	* 	��v/�v	*

� = �− � 0

0 − 2

� . �4.19�

The eigenvalues of this matrix, �1=−� and �2=−2
, are
positive for d�4 and ��2; i.e., we retrieve the mean-field
region of short-range DP.

Another fixed point, the trivial long-range fixed point, is
given by u*=0, v*=2
. Its stability matrix reads

�*= = �4
 − � 0

2
��*� 2

� , �4.20�

where the stroke at ��� denotes the derivative with respect to
u. The eigenvalues �1=4
−� and �2=2
 are positive for
d�4�1−
�=2�, ��2, which marks the region of stability
of the trivial long-range fixed point.

Next, we come to the fixed point v*=0, u*�0, as the
solution of 2��*+�*−�u*=�. Of course, this is the fixed

point of the normal short-range DP with u*=u*
DP. The stabil-

ity matrix is

�*= =��2��*� + �*� − �u*� �u* 2u*

0 ��* − 2

� . �4.21�

The first eigenvalue of this matrix, �1= �2��*� +�*� −�u*� �u*
=�+O��2�, shows the stability range of nontrivial short-
range DP: d�4. Using ��

*
=���u*

DP�=�SR+2−zSR, we find

the stability condition against long-range spreading:

� � zSR − �SR. �4.22�

Now, we come to the interesting LR region where u*
�0 and v*�0. In this domain, the stable fixed points of
�4.17� are solutions of the fixed-point equations

v* = 2
 − ��* � 0, �̄ = � − 4
 = �* − �u*. �4.23�

Using the � functions which follow from Eq. �3.5� and which
have been utilized in Eq. �3.10�, we find the fixed point

u*
LR =

4�̄

7
�1 + �50 + 9 ln

4

3
� �̄

98
+ O��̄2,
�̄�� ,

v*
LR = 2
 +

�̄

14
�1 − �17 − 526 ln

4

3
� �̄

392
+ O��̄2,
�̄�� .

�4.24�

The critical exponents in the LR region are found from Eq.
�4.17� as �LR=��u*

LR� and 1 /
LR=2−��u*
LR� with the expan-

sions

�LR = −
�̄

7
�1 + c��
��̄ + O��̄2�� ,

1/
LR = � −
2�̄

7
�1 + c
�
��̄ + O��̄2�� , �4.25�

where

c��
� = � 4

49
+

36

49
ln

4

3
� + O�
� ,

c
�
� = �15

98
+

9

98
ln

4

3
� + O�
� . �4.26�

Note that we have already encountered the first-order contri-
butions in Eq. �3.30� above. Of course, zLR follows from the
exact relation �3.21�. The stability matrix for this fixed point
reads

�*= = � Au* 2u*

��*� v* v*
� , �4.27�

with A= �2��*� +�*� −�u*� �=3 /2+O��̄��0. The two eigenval-

ues are given by

�� = �Au* + v*

2
� ���Au* + v*

2
�2

− �A − 2��*� �u*v*.

�4.28�

They are positive as long as �A−2��*� �u*v*= ��*� −�u*� �u*v*
= �49 /16+O��̄���̄v*�0. This condition leads to �̄�0 and
v*=2
−��*�0. The long-range fixed point loses its stabil-

ity if the line 2
=��* is reached. At that point, all critical

exponents change over continuously to the usual short-range
DP exponents as can be easily seen from Eq. �4.17�. Hence,
the stability boundary of the long-range Lévy-flight exponent
�=2�1−
� is given by

� = �c = zSR − �SR = 2 −
�

12
�1 + �−

17

288
+

263

144
ln

4

3
��

+ O��2,
��� , �4.29�

which is less than 2. This fact is astonishing because for �
lower than 2 but greater than �c, the long-range part q� is
naively irrelevant in comparison to the normal diffusional
part q2. However, in an interacting theory it is not the free
propagator, but rather the response function ��� ,q ;��
=�1,1�� ,q ;��−1=q�−zf�� /qz ,� /q1/
�, which is the deciding
quantity. Hence, one has to compare q� with qzSR−�SR to find
out which is leading for q→0. The other stability boundary
is approached if u* goes to zero and is given by �̄=�−4

=0. This boundary coincides with the value found above: d
=2�. At this line the exponents cross over to their long-range
mean-field values.

To summarize our findings regarding the scaling regions:
all boundaries between the four scaling regions—namely,
short-ranged DP and long-ranged DP, as well their two
mean-field counterparts—are generally given by the four
lines in a �d ,�� diagram where one or two of the fixed point
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values u* and v* vanish. There is no room for other stability
lines as some authors argued �31�.

C. Landau’s ghost

As we have remarked at several points, the propagator
becomes problematic for higher momenta. Consider the
q-dependent part of the inverse renormalized propagator of
the hybrid theory,

G�q,0,0�−1 = �q2�1 +
v

2

��q/��−2
 − 1�� , �4.30�

where v�0 to ensure stability �positivity� for q→0 for both
signs of 
. The part proportional to v changes sign and leads
to a loss of stability for negative 
 at a momentum qg given
by

ln�qg/�� =
1

2	
	
ln�1 + 2	
	/v� � 1/v �4.31�

for small 
. This ghost reminds us of Landau’s ghost in
quantum electrodynamics. The momentum of the ghost goes
exponentially to infinity if v→0. This ghost even arises for
positive 
 if v�2
. The fixed point of the hybrid theory
always belongs to this region. The correct interpretation is
the following: our asymptotic theory is just an effective
theory in the sense that it can only be used in the low-
momentum limit in a perturbation expansion with v as an
expansion parameter. Therefore, the second part of Eq. �4.30�
must be considered as a perturbation.

Let us demonstrate this in some detail for the inverse
response function �1,1 as an example. To this end, we work
to one-loop order using u, v, �, and 
 as first-order quanti-
ties. The zeroth order is

�1,1
�0��q,� = 0,� = 0� = �q2. �4.32�

Using renormalized perturbation theory, adding both first-
order terms, and neglecting higher-order terms, we obtain

�1,1�q,0,0� = �q2�1 +
v

2

�� q

�
�−2


− 1� +
u

8
ln� q

2�
�� + ¯

= �q2�1 − v ln� q

�
� +

u

8
ln� q

2�
�� + ¯

= �1 −
u

8
ln 2��q2�1 + �u

8
− v�ln� q

�
�� + ¯ .

�4.33�

Now we use the fixed point result v*=2
−��*, with ��

=−u /8, to get

�1,1�q,� = 0,� = 0� = �1 −
u*

8
ln 2��q2�1 − 2
 ln� q

�
��

+ ¯ � �q2�1−
�. �4.34�

As expected, the RG proves to be the systematic tool to
resum all logarithms to yield the correct critical exponent.

This procedure holds for all 
=O��� irrespective of the
sign as long as the fixed point with v*�0 is stable. Other-

wise, v*=0, u*=2� /3, and one gets �1,1��q2−�SR with
�SR=−� /12—i.e., the known behavior for the short-range
case. We once more point out that the second term �the Lévy-
flight contribution� has to be handled as a perturbation to the
desired order and not as a part of the unperturbed propagator.
Also, one has to interpret the special case 
=0 as a relevant
logarithmic perturbation �vq2 ln�� /q� of q2. Only if v is
strictly zero is the short-range case recovered. Thus, one can-
not expect a continuous behavior at 
=0 comparing the
short-range versus the Lévy-flight directed percolation.

V. CRITICAL BEHAVIOR OF DYNAMIC OBSERVABLES
IN LÉVY-FLIGHT DIRECTED PERCOLATION

In this section we will harvest some of our previous re-
sults to calculate scaling forms and logarithmic correction
for those dynamic quantities in long-ranged DP that are most
suitable from the vantage point of numerical simulations
�24�. Two key observables with respect to simulations are the
density of infected individuals, ��t�= �s�r , t���0 for t�0 if the
initial state at time t=0 is prepared with a homogeneous
initial density �0, and the response function ��r , t�
= �s�r , t�s̃�0 ,0��, which yields the density of infected indi-
viduals after the epidemic is initialized by a pointlike source
at t=0 and r=0.

A. Scaling properties

The scaling properties of the density of infected individu-
als and the response function follow from the RGE �3.6�
taken at the long-range fixed point of Eq. �4.17� and by iden-
tifying ��r , t� and ��t� with the Green’s functions G1,1�r , t ;��
and G1,0�r , t ;� ,�0�, respectively. The initial density �0 is in-
troduced into the response functional via a �bare� source

h°�r , t�=h�̂0��t� with renormalization �°0=Z−1/2�0 �19�, which
leads to an additional derivative term 1

2��0� /��0 in the RGE.
We obtain the scaling forms

��t� = t−�S���t1/z
,�0t�+�� ,

��r,t� = t−2�S��r/t1/z;�t1/z
� , �5.1�

where the S. . . are appropriate scaling functions. We drop in
this section all the subscripts at the critical exponents be-
cause we are interested in the long-range case only. Hence,
�=�LR and 1 /
=1 /
LR �see Eqs. �4.25�� and z=�+�, �
= �d+�� /2z, �=−� /z. The expansions of the latter two are

� = 1 −
3�̄

7�
�1 + c��
��̄ + O��̄2�� ,

� =
�̄

7�
�1 + c��
��̄ + O��̄2�� , �5.2�

where

c��
� = � 17

294
−

6

49
ln

4

3
� + O�
� ,
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c��
� = � 23

196
+

36

49
ln

4

3
� + O�
� . �5.3�

At the critical point �=0, Eqs. �5.1� show that the mean-
square radius of spreading from the origin scales as R2�t�
� t2/z and the average number of infected individuals N�t�
=�ddr��r , t�� t�. Starting with a homogeneous finite value
�0, the critical density first increases in a universal time re-
gime with the same exponent as ��t���0t�. Then, after some
crossover time, it decreases as ��t�� t−�. If one starts with a
full lattice of infected sites corresponding to an infinite initial
value �0, only the last scaling behavior is seen. Because of
asymptotic time-reflection invariance of DP �duality symme-
try�, this behavior characterizes also the survival probability
�32� P�t�� t−�.

To first order all exponents are identical to the LR expo-
nents derived from Eqs. �3.30�, of course. The full 
 content
of the functions c. . .�
� in Eqs. �4.25� and �5.2� must be cal-
culated from the long-range model, Eq. �3.16�. Hence, one
has to be careful when applying the expansions to O��̄2� for

=0, e.g., in d=1 where 
= �3− �̄� /4. In Figs. 1–3, we com-
pare our results for the exponents z, �, and � to numerical
results for d=1 by Hinrichsen �18�. For this comparison, we
use the first-order expansions in �̄ �red curves�, which are
exact in 
, and the second-order expansions in �̄ where we
neglect the 
-dependent parts of the c. . .�
� �green and blue
curves�. The green curves show our second-order result for z
and results obtained for � and � by using without further

expansion the scaling relations relating � and � to z and �.
The blue curves stem from using these scaling relations and
then properly expanding � and � to second order in �̄. For �
in the range from 1 /2 to roughly 1, the numerical data and
the analytic results agree remarkably well. For larger �, the
agreement suffers, but is well within the expectations for the
methods used here.

B. Logarithmic corrections

Above the boundary between the genuine and the trivial
long-range regions �d�2�, ��2�, the coupling constant g
tends to zero under the RG. However, g represents a danger-
ously irrelevant variable here, since it scales various observ-
ables, and setting g=0 rigorously leads either to zero or in-
finity for relevant quantities. Due to its twofold nature as
both a relevant scaling variable and an irrelevant loop-
expansion generating parameter, g has to be treated very
carefully. To set the stage for such a treatment, let us briefly
review a few fundamentals of dynamic field theory. In broad
terms, one attempts to determine the cumulant-generating
functional defined by the functional integral

WLR�H,H̃� = ln 
 D�s̃,s�exp�− JLR�s̃,s� + �H,s� + �H̃, s̃�� .

�5.4�

Functional derivatives with respect to the sources H and H̃
define the Green’s functions. The generating functional for
the vertex functions �LR�s̃ ,s�, the dynamic free energy, is
related to the cumulant-generating functional via the Leg-
endre transformation

�LR�s̃,s� + WLR�H,H̃� = �H,s� + �H̃, s̃� , �5.5�

with s=�WLR /�H and s̃=�WLR /�H̃, and vice versa. In
terms of �LR, the twofold nature of g is lucidly exposed by
writing �33�

�LR�s̃,s;�,g� = g−2 LR�gs̃,gs;�,u� . �5.6�

The expansion of the functional  LR�gs̃ ,gs ;� ,u� into a se-
ries with respect to u yields the loop expansion. The zeroth
term g−2 LR�gs̃ ,gs ;� ,0� is just the response functional JLR,
Eq. �3.16�, itself. The scaling form of the generating func-
tional for the cumulants that corresponds to Eq. �5.6� reads
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FIG. 1. �Color online� The exponent z as a function of � for d
=1. The data points stem from simulations by data by Hinrichsen
�18�. The red �upper� and the green �lower� curve correspond to our
one-loop and two-loop results, respectively.
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FIG. 2. �Color online� The exponent � as a function of � for
d=1. The red �upper� curve corresponds to our one-loop results.
The green �lower� and blue �middle� curves correspond to two ver-
sions of our two-loop result �see main text�.
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FIG. 3. �Color online� The exponent � as a function of � for
d=1. The color coding of the curves is the same as in Fig. 2.
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WLR�H,H̃;�,g� = g−2!LR�gH,gH̃;�,u� . �5.7�

To leading order in the logarithmic corrections, we may ne-
glect the dependence of ! and  on u. Functional derivation
leads to the Green’s functions

GN,Ñ��r,t�,�;u� � u−1+�N+Ñ�/2TN,Ñ��r,t�,�,u1/2�0� ,

�5.8�

where TN,Ñ are the contributions of loopless trees consisting

of N+ Ñ−1 propagators and N+ Ñ−2 vertices.
The characteristic equations that follow from the RG

functions, Eqs. �3.29�, with �̄���=�� and d=2�, are to low-
est order given by

�
dū���

d�
= �̄�ū���� =

7

4
ū���2,

d ln X���
d ln �

= �̄�ū���� = −
ū���

4
,

d ln X����
d ln �

= �̄�ū���� = −
ū���

4
,

d ln X����
d ln �

= �̄�ū���� =
ū���

2
, �5.9�

Solving these equations, we obtain, asymptotically for �
�1,

ū��� � 	ln �	−1, X��� � 	ln �	1/7,

X���� � 	ln �	1/7, X���� � 	ln �	−2/7. �5.10�

Hence, we get

GN,Ñ��r,t�,�;u� � ū���−1�ū����2�X�����N+Ñ�/2TN,Ñ„��r,��X����t�,�−�X�����, ū���1/2�−�X���1/2�0…

� 	ln �	���	ln �	−3/7�N+ÑTN,Ñ���r,��	ln �	1/7t�,�−�	ln �	−2/7�,�−�	ln �	−3/7�0� �5.11�

as solutions of the entire RGE. Choosing either ��	ln �	1/7t
�1 or �−�	ln �	−2/7��1, we deduce that at the critical point

��t� � �0�ln t�1/7 �5.12�

in the initial-time region,

��t� � P�t� � t−1�ln t�3/7 �5.13�

in the late-time region, and

R2�t� � �t�ln t�1/7�2/�. �5.14�

VI. CONCLUDING REMARKS

In summary, we studied DP with Lévy-flight spreading by
using the powerful methods of renormalized field theory. Our
work confirms the previously known RG fixed-point struc-
ture including their stability regions and the fact that the
critical exponents change continuously in the crossover be-
tween short-range DP and Lévy DP. We calculated the criti-

cal exponents for Lévy DP, which have hitherto been known
to first order, to second order in an expansion in � and 
.
These results agree well with the existing numerical simula-
tions for d=1. In addition, we calculated the leading loga-
rithmic corrections for several dynamical observables that
are typically measured in simulations.

We hope that our work stimulates further interest in long-
range DP. It would be interesting to see further simulation
results, e.g., for the critical exponents for d�1 and for loga-
rithmic corrections. Also, it would be interesting to have ana-
lytical and numerical results for other universal quantities
such as scaling functions and amplitudes. In a forthcoming
paper we will apply the same methods to the long-range
GEP—that is, to dynamic isotropic percolation �33�.
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